Single MoO3 nanoribbon waveguides: good building blocks as elements and interconnects for nanophotonic applications

نویسندگان

  • Li Zhang
  • Guoqing Wu
  • Fuxing Gu
  • Heping Zeng
چکیده

Exploring new nanowaveguide materials and structures is of great scientific interest and technological significance for optical and photonic applications. In this work, high-quality single-crystal MoO3 nanoribbons (NRs) are synthesized and used for optical guiding. External light sources are efficiently launched into the single MoO3 NRs using silica fiber tapers. It is found that single MoO3 NRs are as good nanowaveguides with loss optical losses (typically less than 0.1 dB/μm) and broadband optical guiding in the visible/near-infrared region. Single MoO3 NRs have good Raman gains that are comparable to those of semiconductor nanowaveguides, but the second harmonic generation efficiencies are about 4 orders less than those of semiconductor nanowaveguides. And also no any third-order nonlinear optical effects are observed at high pump power. A hybrid Fabry-Pérot cavity containing an active CdSe nanowire and a passive MoO3 NR is also demonstrated, and the ability of coupling light from other active nanostructures and fluorescent liquid solutions has been further demonstrated. These optical properties make single MoO3 NRs attractive building blocks as elements and interconnects in miniaturized photonic circuitries and devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integratable quarter-wave plates enable one-way angular momentum conversion

Nanophotonic waveguides are the building blocks of integrated photonics. To date, while quarter-wave plates (QWPs) are widely used as common components for a wide range of applications in free space, there are almost no reports of Integratable QWPs being able to manipulate the angular momentum (AM) of photons inside nanophotonic waveguides. Here, we demonstrate two kinds of Integratable QWPs re...

متن کامل

Nanoribbon waveguides for subwavelength photonics integration.

Although the electrical integration of chemically synthesized nanowires has been achieved with lithography, optical integration, which promises high speeds and greater device versatility, remains unexplored. We describe the properties and functions of individual crystalline oxide nanoribbons that act as subwavelength optical waveguides and assess their applicability as nanoscale photonic elemen...

متن کامل

Time Domain Analysis of Graphene Nanoribbon Interconnects Based on Transmission Line ‎Model

Time domain analysis of multilayer graphene nanoribbon (MLGNR) interconnects, based on ‎transmission line modeling (TLM) using a six-order linear parametric expression, has been ‎presented for the first time. We have studied the effects of interconnect geometry along with ‎its contact resistance on its step response and Nyquist stability. It is shown that by increasing ‎interconnects dimensions...

متن کامل

Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits

The fast development of plasmonics have greatly advanced our understanding to the abundant phenomena related to surface plamon polaritons (SPPs) and improved our ability to manipulate light at the nanometer scale. With tightly confi ned local fi eld, SPPs can be transmitted in waveguides of subwavelength dimensions. Nanophotonic circuits built with plasmonic elements can be scaled down to dimen...

متن کامل

Attenuation, dispersion and nonlinearity effects in graphene-based waveguides

We simulated and analyzed in detail the behavior of ultrashort optical pulses, which are typically used in telecommunications, propagating through graphene-based nanoribbon waveguides. In this work, we showed the changes that occur in the Gaussian and hyperbolic secant input pulses due to the attenuation, high-order dispersive effects and nonlinear effects. We concluded that it is possible to c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015